Copyright © 2019 by Lukasz Kostrzewa. Published by The Mars Society with permission.

DESIGN OF A GRAPHICAL USER INTERFACE FOR ROVER CONTROL

Lukasz Kostrzewa, Patrycja Cieplicka, Marcin Gajewski, Michal Halon
Students’ Space Association Warsaw University of Technology
l.kostrzewal 2@gmail.com

ABSTRACT

Control of the robots on Mars is a chal-
lenging task. To facilitate the interaction
between humans and robots, a well-
designed Graphical User Interface (GUI)
is needed. Mars rovers operate largely
autonomously, mostly due to high de-
lays in communication between the rover
and the ground station. However when
first humans land on Mars, rovers can be
controlled by the astronauts, which may
extend the functionality of the robots. In
both cases a ground station application is
needed to monitor rover’s state, present
data from sensors and allow operator to
send control commands.

This paper discusses the design of the
rover’s GUI applications and technolo-
gies used for the robot interface design.
It focuses on data visualization and the
adjustment of the control application to
various robot’s configurations and use
cases.

The paper also presents the ground station
software used in Mars rover Sirius, which
has been designed and constructed by the
members of Students’ Space Association
at Warsaw University of Technology,
Poland. The software was used during the
University Rover Challenge 2019 and the
European Rover Challenge 2018.

Keywords: control software, rover, RSVP,
GUI

1 INTRODUCTION

Robot control software needs to be fast and
robust. The functionality is often varied,
including network programming, data pro-
cessing and visualization, processing of in-
put from control devices e.g. joysticks,
robot configuration and video stream man-
agement. User experience is also impor-
tant to facilitate the work of the operator.
Engineers at JPL/Caltech have been devel-
oping control software for Mars rovers for
years. They managed to create advanced
and robust software, that has made Mars
exploration possible. Mock-up rovers are
becoming popular among engineering stu-
dents. There are dozens of student teams
around the world that construct their own
rovers and participate in competitions like
University Rover Challenge or European
Rover Challenge. One of such teams is
SKA Robotics from Warsaw University of
Technology. Control software developed
by SKA Robotics is presented in part 4.

2 ROVER SEQUENCING AND VISU-
ALIZATION PROGRAM

The Rover Sequencing and Visualization
Program (RSVP) is a program developed
by Jet Propulsion Laboratory. It was built
upon Rover Control Workstation software
for the Pathfinder mission[3]. It was
originally developed for Mars Exploration
Rover mission. After some modifications
and enhancements it has been also used in
Curiosity rover mission. RSVP is a collec-

tion of applications that communicate us-
ing the Parallel Virtual Machine API [1].
The most important ones are Rover Se-
quence Editor (RoSE), that manages com-
mands and creates interface for the user
to create new one, and HyperDrive which
generates 3D visualization of the rover’s
surroundings and simulates rover’s mo-
tion. Other applications include: Logger —
records messages passing through the sys-
tem; Image Viewer — displays and pro-
cesses images from the rover; Sequence
Flow Browser — displays commands exe-
cution timeline [3].

2.1 Rover Sequence Editor

RoSE is a text-oriented command editor
developed in Java. It allows the operator
to enter commands and edit existing com-
mand sequences. The commands are based
on XML. It is a markup language which
is easily readable by both humans and ma-
chine. RoSE is highly data-driven as defi-
nitions of all the commands are stored in
the configuration file. Each day opera-
tor can generate around 1000 commands
[2]. To facilitate generation of standard
and repeatable sequences RoSE supports
macros. They are parametrized templates
which contain validated sequences of com-
mands.

2.2 HyperDrive

HyperDrive 1s an advanced tool used for
3D visualization of the rover’s surround-
ings and simulating rover’s motion. It is
developed in C++ as performance in this
tool is critical. The 3D model is gener-
ated based on stereo images, which pro-
vide information about the depth in the pic-
ture. The regions without data are in beige.
HyperDrive interface is presented in fig.
1. This tool allows the operator to define
control commands. They can select points

in 3D and tell the rover to drive there or
approach the point with the robotic arm.
HyperDrive is also used to simulate mo-
tion commands as a part of command se-
quence validation procedure. HyperDrive
is also capable to simulate images. The op-
erator can see how the images that will be
taken will probably look like. That simu-
lations also include shadows that are com-
puted based on a relative position of the
sun at the given moment [2].

Figure 1: Rover and its surrounding visualization in
HyperDrive program. Courtesy NASA/JPL-Caltech.

2.3 RSVP Workflow

The rovers operate in daily mission plan-
ning cycle. Each day the data are received
from the rover and processed. Then, new
commands are generated and send to the
rover. Firstly, the operator can analyze
the data from various sensors, which is
important in detecting anomalous condi-
tions. The operator can view the images
taken by the on-board cameras. To under-
stand better the surroundings of the rover,
3D terrain model is generated. When the
operator has good situational awareness,
they can generate control commands for
the next Martian day. The command se-
quences are validated on a few levels. The
syntax and arguments’ range are checked.
Motion commands are simulated in Hyper-

Drive. Some complex or hazardous tasks
can be also simulated on an actual rover
in a JPL testbed [2]. After the validation,
command sequences are sent to the rover.

3 DESIGN OF A GRAPHICAL USER
INTERFACE FOR ROBOT CON-
TROL

To design a robust and user-friendly con-
trol software, a well-designed architecture
of the program is needed.

3.1 Separation of concerns

Separation of concerns approach breaks
the complexity of a problem into easier to
solve, but coupled subproblems. A big and
complex software program should be sep-
arated into modules. Each module should
encapsulate some information and func-
tionality. As the modules create the whole,
their interfaces need to be well-defined.
In RSVP tool functionalities are separated
into a few programs with standardized way
of communication using PVM [1]. Such
approach facilitates the development and
maintenance of the whole system and al-
lows developers to choose the best technol-
ogy for each component. RoSE is written
in Java, while HyperDrive, which requires
greater processing speed, in C++ [3].

3.2 Data separation

Data separation approach tells that as much
data as possible should be stored in con-
figuration files. It greatly facilitates any
modifications in the data. A good solution
are markup languages like XML or JSON
as they are easily readable for both hu-
mans and machines. Rover Sequence Ed-
itor stores definitions of commands in an
XML configuration file [1]. It simplifies
modification of commands definition and
adjustment of the control software to a dif-
ferent rover. RSVP, after some upgrades,

has been used in the Curiosity rover mis-
sion [5].

3.3 Design patterns

Design patterns are reusable solutions to
software development issues. They facil-
itate software system design and mainte-
nance. In RSVP such design patterns as
Model-View-Controller (MVC), Factory or
State were used [4]. MVC pattern is com-
monly used for GUI development. It con-
sists of three components: Model —respon-
sible for program’s logic, it can manage or
store data; View — presents data to the user;
Controller — coordinates data flow between
the model and the view and allows the user
to make changes in the model.

4 CONTROL SOFTWARE FOR
ROVER SIRIUS

Sirius is a mock-up rover designed by the
robotics division of Students’ Space Asso-
ciation from Warsaw University of Tech-
nology, Poland. The rover is designed to
participate in international rover competi-
tions i.e. University Rover Challenge and
European Rover Challenge series. During
the competitions, the rover is teleoperated
and 1s beyond the line of sight of the oper-
ator. Thus, the operator needs a GUI pro-
gram to send control commands and ana-
lyze video stream and data from sensors
and on-board devices. There are a few ba-
sic requirements regarding the control pro-
gram. It needs to be easily configurable
as the rover needs to operate in different
task in different configurations. The in-
terface needs to be user-friendly and intu-
itive because there is no much time for op-
erator training. The program also needs
to be cross-platform, work well on both
Windows and Linux operating systems. To
meet that requirements C++ with Qt frame-
work are used. Input from joystick, which

is used to control the rover, is processed
with SFML. The program was named Main
Console 2.

Figure 2: Rover Sirius during University Rover Challenge
2019. Author: Grzegorz Jasina.

4.1 Program architecture

The program is divided into 5 modules.
The Main Module creates the application’s
main window. It manages other modules,
settings and configuration files. Rover
manages rover state, stores data from sen-
sors and sends control commands to the
rover. Input processes input from Joystick
and Keyboard and transforms it to con-
trol commands. GUI creates the interface.
SensorsWidgets 1s a set of classes used
for data processing and visualization. The
program also uses Protocol — a library for
communication with the rover. The data
flow between the modules is presented in
fig. 3.

Setings and Main Madule Seftings and

Sensors data, logs, rover state Managing cameras,

rover state, efc.

1
‘ Protocol I:‘ Rover | Bsosdia
N Control .
Control commands ommands | Setlings and
configuration gengors gata and
Information about configuration

available actuators

Input ‘ Sensors Widgets

Figure 3: Data flow between the modules in Main Console 2

4.2 Graphical User Interface

The rover operates in different configura-
tions. The user interface also needs to be
easily configurable. It is achieved with
tabbed interface — similar to the one in web
browsers. It allows user to easily rearrange
the layout by dragging and dropping the
tabs. The operator can also hide the tabs
that are not currently needed. The layout
of the tabs is remembered when the user
restarts the program.

(b)

Figure 4: User interface in different configurations.

4.3 Data management

To manage sensors data and their presen-
tation Model-View-Controller design pat-
tern was implemented. Data is stored in
a model in the Rover module. The view
presents the data to the user. In Main Con-
sole 2 it 1s presented in a table and using
visualization widgets described in 4.4. The
controller is used to manage data flow from
the model to the view. Most visualization
widgets have their own controllers.

4.4 Data visualization widgets

During the competitions the time is very
limited, so it is important for the operator to
analyze data from sensors quickly. As raw
data are hard to interpret, the set of visu-
alization widgets was developed as a Sen-
sorsWidgets library. The widgets include,
among others, attitude indicator, manip-
ulator model or windows with data from
motor boards.

Platform

speed: 0.21 m/s
temp: 29 °C
state: working
LF: 19 rpm

LR: 20 rpm

RR: 17 rpm

RF: 16 rpm

Figure 5: Widgets for sensors data visualization.

4.5 Configuration file

In software development it is important to
separate data from the source code. Such
approach makes program much more easy
to modify. In Main Console 2 information
about on-board devices are stored in con-
figuration file, in JSON format. Thanks to
that approach when changing e.g. a sen-
sor to a new one with different parameters,
there is no need to recompile the control
software and release a new version. Only
the configuration file has to be modified.

5 ACKNOWLEDGEMENT

Sirius rover’s control software is devel-
oped in Students’ Space Association, Fac-
ulty of Power and Aeronautical Engineer-
ing, Warsaw University of Technology,
Poland.

Rover Sequencing and Visualization Pro-
gram is developed by the engineers at the
Jet Propulsion Laboratory, California Insti-

tute of Technology under a contract with
the National Aeronautics and Space Ad-
ministration. Great thanks for sharing im-
ages.

5 References

[1] Hartman, F., Cooper, B., Leger, C.,
Maxwell, S., Wright, J., Yen, J.
(2005) Data Visualization for Effec-
tive Rover Sequencing

[2] Wright, J., Hartman, F., Cooper, B.,
Maxwell, S., Yen, J., Morrison, J.
(2004) Driving on the Surface of
Mars with the Rover Sequencing and
Visualization Programg

[3] Maxwell, S., Cooper, B., Hartman,
F., Wright, J., Yen, J. (2004) The De-
sign and Architecture of the Rover Se-

quencing and Visualization Program
(RSVP)

[4] Cooper, B., (2002) Rover Sequencing
and Visualization Program (RSVP)

for the Mars Exploration Rover Pro-
gram (MER), 2002 JPL IT Seminar

[5] MSL project at JPL/Caltech
https://www-robotics. jpl.
nasa.gov/projects/MSL.cfm

https://www-robotics.jpl.nasa.gov/projects/MSL.cfm
https://www-robotics.jpl.nasa.gov/projects/MSL.cfm

	Introduction
	Rover Sequencing and Visualization Program
	Rover Sequence Editor
	HyperDrive
	RSVP Workflow

	Design of a Graphical User Interface for robot control
	Separation of concerns
	Data separation
	Design patterns

	Control software for rover Sirius
	Program architecture
	Graphical User Interface
	Data management
	Data visualization widgets
	Configuration file

	Acknowledgement

