

An alternative, broad-scope approach to ISRU plans for Mars

21st Annual International Mars Society Convention

August 23, 2018

Gerald E. Voecks Barry Nakazono Abdul-Majeed Azad Ashley Karp Thomas Peev Carl Guernsey

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA

© 2018 California Institute of Technology. Government sponsorship acknowledged.

Early Focus of ISRU on Mars

- Generate O₂ for Mars Ascent Vehicle (MAV) using CO₂
 - Focus mainly on use of solid oxide electrolysis (CO₂ reduction)
 - $2CO_2 \rightarrow 2CO + O_2$
 - Alternate approach through use of recycled H₂O via water electrolysis
 - Combination of water electrolysis and reverse water gas shift (RWGS) reactions
 - Electrolysis $(2H_2O \rightarrow 2H_2 + O_2)$ and RWGS $(CO_2 + H_2 \rightarrow CO + H_2O)$
 - Water is recycled from RWGS to electrolyzer for 'closed' system operation
- Generate CH₄ and O₂ for MAV
 - Apply combined Sabatier process and Proton Exchange Membrane (PEM) Electrolysis (Ash – 1978)
 - $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$ and $2H_2O \rightarrow 2H_2O + O_2$
- Only minor consideration for other uses for extant carbon (CO₂)
 - Methanol production described (Zubrin 1997)
 - Ethylene and acetylene also considered (Zubrin 1997 and Linne 1991)
 - Fischer-Tropsch liquids discussed (Zubrin 1999)
- Little consideration for other needs or use of carbon (CO₂) resource

"Feasibility of rocket propellant production on Mars", R.L.Ash, et al, Acta Astronautica 1978, Vol. 5, pp 705-724

Focus on CH_4 production from CO_2 results in certain limitations and poses questions

- Production of CH₄ for propulsion requires certain demands
 - Storage of CH₄ requires high electrical demand for liquefaction
 - Robotic transfer of liquid CH₄ requires special operational demands
 - Required amount of H_2 for CH_4 production necessitates high demand on H_2O recovery from Martian sources (2 H_2 for every C)
 - Separation of H_2 from CH_4 in Sabatier process operation is not resolved
 - Expanded use of CH₄ for other uses requires additional processing
- How does CH₄ fit into longer term ISRU operations?
 - Human and equipment operations on Mars will demand production of materials applicable to manufacturing of replacement parts, etc.
 - Chemical processing of CH_4 to produce hydrocarbon materials (e.g., plastics) requires additional high energy demands (i.e., steam reforming of CH_4 { $CH_4 + 2H_2O \rightarrow CO + 3H_2 + H_2O$ } for synthesis gas [CO and H₂] production)
 - Systems aspects associated with combining propellant production <u>AND</u> synthesis of fabrication materials are important to long range planning

Consider Alternative ISRU Approaches on Mars

- Production of various hydrocarbon materials from CO₂ and H₂O
 - Synthesis gas (CO/ H_2) production necessary as first step
 - Solid oxide electrolysis (SOXE) offers an efficient method for CO and H₂ production from combined CO₂ and H₂O feed in addition to production of pure O₂
 - Reverse water gas shift (RWGS) process (CO₂ + H₂ \rightarrow CO + H₂O) exemplified in the past
 - Methanol (MeOH) synthesis is a source for production of various hydrocarbons
 - Either of two synthesis processes is applicable
 - − $CO_2 + 3H_2 \rightarrow CH_3OH + H_2O \text{ or } CO + 2H_2 \rightarrow CH_3OH$
 - Methanol easily stored as a liquid under most Martian conditions
 - Dimethyl ether (DME) synthesis offers a range of advantages
 - Produced via several methods from synthesis gas and source for other hydrocarbons
 - Offers excellent possibility as a MAV propellant
 - Fischer-Tropsch process is also a source of a propulsion fuel
 - Production of liquid hydrocarbon similar to RP-1 is part of product mixture
 - No problem with sulfur as a contaminant in fuel produced on Mars
 - Hydrocarbon mixture can provide initial material for other useful hydrocarbon products
 - Significant advances in process development over the last 20 years

Use of SOXE offers many advantages over RWGS

- SOXE can operate efficiently with a combined CO₂ and H₂O feedstock to simultaneously produce synthesis gas and O₂
 - Operation with H_2O increases the overall efficiency of the SOXE compared to CO_2 electrolysis
 - CO₂ electrolysis is considered as source of oxygen source on Mars
 - Primary electrochemical reaction is associated with H_2O electrolysis
 - Lower overpotential [1.25v (H₂O) vs 1.47v (CO₂)]
 - Reduced possibility of carbon production in cathode compared to dry CO₂ electrolysis
 - Ratio of CO_2/H_2O can be varied for optimum H_2/CO production
 - Continuous operation not dependent on availability of either H_2O or CO_2
 - Oxygen is produced throughout operation
 - Operational pressure can be varied according to process demands
 - For increase in $\rm O_2$ demands, pressurized operation can provide advantage in $\rm O_2$ compression efficiency
- RWGS must be combined with separate H₂O electrolyzer for syngas production
 - − $2H_2O \rightarrow \underline{2H_2} + O_2$ (electrolysis) and $CO_2 + H_2 \rightarrow \underline{CO} + H_2O$ (RWGS)

Industrial SOXE Co-electrolysis Process Schematic

- System designed for terrestrial operations (thermal integration)
- Single step synthesis operation simpler than two step (via MeOH)
- Aspen model used in system performance evaluation
- Martian operations would require modifications to system integration

"Thermodynamic Analysis of Coupling a SOEC in Co-Electrolysis Mode with the Dimethyl Ether Synthesis", G. Botta, M. Solimeo, P. Leone, P.V. Aravind, Fuel Cells 15, 2015, No. 5, 669-681

Recent DME/SOXE co-electrolysis design for commercialization

"Thermodynamic Analysis of Coupling a SOEC in Co-Electrolysis Mode with the Dimethyl Ether Synthesis", G. Botta, M. Solimeo, P. Leone, P.V. Aravind, Fuel Cells 15, 2015, No. 5, 669-681

Recent developments on direct DME synthesis from syngas

• Significant interest and progress in single step operation

Determination of DME yields as a function of catalyst (Cu/Zn) and dehydration material (HZSM-5) loadings (constant pressure of 50 bar, $H_2/CO = 1$) [Cu/Zn (Cu loading) catalyst, HZSM-5 zeolite (Si/Al ratio)]

"Bifunctional catalysts based on colloidal Cu/Zn nanoparticles for the direct conversion of synthesis gas to dimethyl ether and hydrocarbons", M. Gentzen, D.E. Doronkin, T.L. Sheppard, J.-D. Grunwaldt, J. Sauer, S. Behrens, Applied Catalysts A, General 557, 2018, 99-107

Recent developments on direct DME synthesis from syngas

Determination of DME yields with combined catalyst (Cu/Zn/Mn, 2:0.75:1.5) and dehydration material (SAPO-18) [cat/dehydration material ~2] with respect to particle size and catalyst bed configuration (constant pressure of 30 bar, T=275 C, $H_2/CO = 3$

"Catalyst configuration for the direct synthesis of dimethyl ether from CO and CO2 hydrogenation on CuO-ZnO-MnO/SAPO-18 catalysts", A. Ateka, M. Sanchez-Contador, J. Erena, A.T. Aguayo, J. Bilbao, Reac. Kinet. Mech. Cat, 124, 2018, 401-418

Comparison of various fuels as MAV propellant options

- Assumed identical MAV performance
 - Basis used was the JSC sized MAV
 - Tank mass model that fits the JSC data from SOL 1 and SOL 5 for LOX / Methane was created
 - System comparison based on JSC 42.9 mT MAV liftoff mass
 - Tank estimates include mass of empty landing tank shell
 - DME offers significant advantages

Property		LOX/Methane	LOX/DME	LOX/Methanol
Delivered ISP – (H/C)		360 s (4)	344 s (3)	331 s (4)
MAV Comparison	Emtpy Mass [mT]	9.34	9.06 ^[1]	9.21
	Volume of Tanks [m ³]	41.4	34.8 ^[2]	36.8
	Liftoff Mass, LOX [mT]	25.5	21.3	21.6
	Liftoff Mass, Fuel [mT]	8.07	11.8	14.8
	Liftoff Mass, total [mT]	33.6	33.1	36.4
	LOX tank shell Mass [mT]	0.236	0.197	0.200
	Fuel tanks shell mass [mT]	0.212	0.190	0.203
Energy to liquefy	LOX [MJ]	5434	4539	4603
	Fuel [MJ]	4137	0.0	0.0
	Total [MJ]	9571	4539 ^[3]	4603
Energy to store	LOX [MJ/day]	767	680	686
	Fuel [MJ/day]	608	8	0.0
	Total [MJ/day]	1375	688 [4]	686

Compared to methane - based on projected same liftoff mass (~42.9 mT) on Mars:

1.DME comes out ahead on landed MAV dry mass (3% better)

2.DME comes out ahead on landed MAV tank volume (**16% smaller**)

3.DME comes out ahead on energy to liquefy the launched propellant load: (**53% less energy**)* [liquefaction included in fuel production] **4.DME** comes out ahead on energy to store the launched propellant load: (**50% less energy/day**)

Anticipated product distribution from Fischer-Tropsch process unit

- Production of "RP-1" is a fraction of overall products
 - (+) Distillation column would provide the cut of hydrocarbons desired
 - (+) No sulfur in the fuel due to use of clean initial CO and H_2 reactants
 - (+) Other hydrocarbon species could provide material for other uses
 - (+) Extensive commercial experience exists in FT process operations
 - (-) Total amount of CO and H_2 required for RP-1 specifically is relatively high
 - (-) System required for capturing RP-1 spec fuel is relatively complex

Mole fraction in gas

– (-) Energy efficiency on the order of 50-60 %

"Multiscale and Multiphase Model of Fixed Bed Reactors for Fischer-Tropsch Synthesis: Intensification Possibilities Study", M. Stamenić, V. Dikić, M. Mandić, B. Todić, D. B. Bukur, and N. M. Nikačević, I&EC Res, 56, 2017, 9964-9979

Consider Broader Perspective of CO₂ and H₂O use on Mars

Long term operations on Mars benefits from operating synthesis processes which provide <u>dual benefits</u>, i.e. propellant fuel and oxygen <u>AND</u> feedstock for other useful materials

- Dimethyl ether production processes inherently include the ability to generate other useful hydrocarbons
 - Dehydration produces olefinic and paraffinic hydrocarbons
 - Methanol can be produced instead of dimethyl ether if advantageous
- Fisher-Tropsch process produces hydrocarbons that can be converted to other useful hydrocarbons
 - Additional separation and processing required
- Methane must be processed further (i.e., via steam reforming) in order to produce synthesis gas (CO and H₂) from which other useful hydrocarbons can subsequently be synthesized
- Oxygen production is considered a requirement in all systems

Outline for DME production from CO_2 and H_2O on Mars

- 1. Understand SOXE benefits from Mars 2020 MOXIE demonstration
 - MOXIE <u>Mars Oxygen ISRU Experiment</u> (Solid Oxide Electrolyzer)
 - Small SOXE/CO₂ compressor system designed to illustrate production of O₂ via electrolysis of Martian CO₂
 - Initiates understanding of engineering aspects associated with operating on Mars
- 2. Scale up SOXE to include co-electrolysis on Mars
 - Complete design for DME production system
 - Fabricate modular DME production system
- Demonstrate O₂ production and storage system for MAV/human use
- 4. Demonstrate modular O₂ and DME production on Mars
- 5. Demonstrate O_2 and DME production and storage for MAV and human operations on Mars

Conclusions

- Liquid oxygen (LOX) production is clearly necessary to include in any chemical processing of in situ resources on Mars
- While methane production as a MAV fuel appears simple in utilizing CO₂ and H₂O resources, additional processing of methane is required to generate other useful materials necessary to sustain long duration operations on Mars
- Synthesis processes which produce MAV fuels and oxidant, as well as feedstock for generating other useful hydrocarbon materials, provides a dual benefit to ISRU processes
- Dimethyl ether appears to offer significant benefits over methane as a fuel for MAV
- Methanol synthesis and Fischer-Tropsch process provide options worth considering as options to methane as a MAV fuel
- Additional details associated with processing equipment are needed to define overall benefits and trade-off value for alternative fuel choice

Funding for this investigation was provided by Jet Propulsion Laboratory California Institute of Technology